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Abstract 

This paper studies the dynamics of ride-sharing competition.  Ride-sharing is modelled as a spatial 

two-sided market with heterogeneous passengers and drivers, both located on a Salop (1979) 

circle.  The model is simulated to study four aspects of ride-sharing competition:(i) price 

distribution and dynamics, (ii) strategic pricing, (iii) fixed pricing vs. surge pricing, and (iv) 

information-sharing.  Dynamic platform competition in a spatial setting can generate distinct and 

persistent bands of fluctuating prices. Space and stochastic luck can mitigate winner-take-all 

effects in price competition. Platforms adopting fixed pricing can compete with platform with 

surge pricing provided the former are not set too high.  However, space and stochastic luck can 

also render the outcomes of such competition uncertain.  Information sharing eliminates price 

fluctuations by pooling information on demand.  The complexity of ride-sharing implies that the 

impact of policy interventions cannot be known in advance in some cases. 
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Dynamics of Ride Sharing Competition

Cassey Lee

“We are not setting the price. The market is setting the price. We have algorithms

to determine what that market is.”

Travis Kalanick, Former CEO, Uber1

1 Introduction

Ride-sharing services has had significant and disruptive impact on public
transport in many countries in recent years. Even though ride-sharing ser-
vices per-se are not new, having existed intermittently in the US during the
1940s and 1970s, the advent and confluence of new technologies has led to
a rapid and sustained growth of such services in many countries since late
2000s.2 Today, the ride-sharing services market is still evolving. Platforms
such as Uber, Didi Chuxing, Grab and Lyft continue to fine-tune their busi-
ness model and pricing practices as well as cope with new regulations. Often,
these new regulations have varied across countries. In some countries, such
as Japan, ride-sharing services have been outright prohibited. In other coun-
tries, such as Singapore, regulators have embraced ride-sharing markets but
have gradually increased regulatory oversight. The varied responses observed
across many countries clearly suggest that transport regulators are still strug-
gling to make sense of the ride-sharing market. The regulatory challenges
have been compounded by the nascent nature of the research literature on
ride-sharing.

The goal of this study is to provide insights into the nature and dynamics
of competition in the ride-sharing market.3. The importance of such an
endeavour cannot be underestimated as policymakers and regulators have
expressed difficulties in applying insights from the research literature to their
work (Auer and Petit, 2015).

1“Uber boss says surging prices rescue people from the snow”, WIRED, 17 December
2013.

2See Hahn and Metcalfe (2017) for a brief discussion of the historical evolution of
ride-sharing services.

3Rysman (2009, p.125) defines a two-sided market as a market in which: “(1) two sets
of agents interact through an intermediary or platform, and (2) the decisions of each set
of agents affects the outcomes of the other set of agents, typically through an externality.”
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In this study, a series of computer simulations are undertaken using a stochas-
tic ride-sharing model in a spatial setting. The distributions of market prices
are examined within the context of a decentralized market in spatial set-
ting. The effects of pricing strategies adopted by competing platforms will
be compared. This include competition between platforms using fixed and
surge pricing. As information on demand and supply conditions is a key issue,
this study will also explore the impact of rival platforms sharing information
on demand conditions.

The outline of this paper is as follows. Section 2 will provide a brief descrip-
tion of the ride-sharing. Section 3 will discuss the theoretical and empirical
literature relevant to ride-sharing. This leads to a discussion of the specific
topics to be investigated in Section 4. The structure of the model and sim-
ulation implementation are described in Section 5. Section 6 discusses the
simulation results. Section 7 concludes.

2 Ride-Sharing

Ride-sharing is essentially a ‘match-making’ service implemented using a
digital platform (such as Uber, Didi Chuxing, Grab and Lyft) that matches
independent drivers with passengers. This matching enables drivers to pro-
vide rides (taxing services) to passengers for a fee (Figure 1).4 This is made
possible by the use of mobile applications (apps) created by the platforms
that can geographically locate both passengers and independent drivers.

The process of ride-sharing can be described as follows:

• Step 1: A passenger use his/her ride-sharing mobile app to request for
a ride by inputting and sending a signal to a platform (Grab/Uber)
which contains information on the trip’s origin and destination.

• Step 2: The platform’s mobile app instantaneously computes a fare
and sends the offer fare to the passenger. This fare is computed based
the demand (number of ride requests) and supply (number of drivers)
around the passenger’s location.

• Step 3: The passenger has the option of accepting or rejecting the fare.
If he or she accepts the proposed fare, this decision is conveyed to the
platform.

4Ride-sharing is also part of the “sharing economy”. See Sundararajan (2016).
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• Step 4: The accepted proposed set of trip and fare is then transmitted
to the nearest driver (also identified and computed algorithmically).

• Step 5: The driver has the option of accepting or declining the proposed
set of trip-fare. If the driver accepts the offer, he/she will then receive
instruction on how to reach and pickup the passenger.5

• Step 6: The transaction ends when the destination is reached. Both
the passenger and driver are given the opportunity to rate the quality
of their experiences.

Figure 1: Match Making in Ride-Sharing

A key element in ride-sharing is the dynamic pricing of fares that are im-
plemented using a “surge pricing” algorithm that reduces the gap between
demand and supply. This algorithm has been described by Uber’s consul-
tants and researchers as one that “assigns a simple multiplier that multiplies
the standard fare in order to derive the surged fare” (Hall et al., 2015, p.1).
The surge algorithm kicks in when there is a significant amount of demand
for rides compared to supply (available drivers within a location). The ratio-
nale underlying the surge algorithm is two-fold. First, on the demand-side,
when there is excessive demand - higher prices will ensure that only pas-
sengers with a high valuation of a ride (hence, a higher willingness to pay)

5If he/she declines the offer, the platform will send the offer to another driver. This
process will loop for a fixed number. If no driver accepts, the passenger will be informed
that no drivers are available and is advised to wait/re-book.
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will obtain a ride. This brings about, it is argued, an efficient allocation of
resources as such resources go to its highest valued use. Second, the higher
price will attract more drivers to (i) start driving (propensity) and (ii) drive
to location with high-demand (intensity). The result is an increase in the
supply of drivers in the location with high demand. The demand and supply
responses to surge pricing act to reduce the gap between demand and supply.

The size of the multiplier in surge pricing has been reported to exceed two
(2x) and even reach 9.9x in some cases.6 The surge pricing algorithm can be
suspended by platforms in situations when its implementation could provoke
public anger such as in the cases of terror attack or rail breakdown. More
recently, Uber has re-designed its apps by removing the display of multi-
plier factor (which has irritated riders). In its place, the estimated fare is
calculated and offered (though this is still be based on surge pricing).

Another important aspect of ride-sharing is its two-sided nature - passengers
(buyers) on the one side and drivers (sellers) on the others. The ride-sharing
platform is a two-sided platform in which network effects at both end are
important. For passengers, the greater availability of cars at a given platform
would attract them to use the platform due to lower prices (smaller excess
demand gap) and shorter waiting time. Similarly, the greater the number of
passengers that have signed up to a given platform, the more attractive the
platform will be to drivers due to greater probability of picking up passengers
(lower idle time).

Finally, ride-sharing is a two-sided market with “multi-homing” on the de-
mand and supply sides. On the demand side, passengers can download more
than one car-hailing apps (e.g. Grab and Uber) and use them to compare
prices (arbitrage)and availability. Similarly, drivers can sign-up to more than
one platform, choosing which platform to use depending on various factors -
financial incentives offered as well as network effects (probability of picking
up passengers).

In response to these factors, platforms have strategically implemented pro-
grams aimed at increasing the cost of passengers and drivers from switching
from one platform to another. For passengers, platform have offered dis-
counted fares and loyalty programs (accumulated points that can redeemed

6In the aftermath of the terror attack in London in June 2017, Uber’s surge price in
the vicinity was reported to be around 2.1x. See “Uber criticized for surge pricing after
London terror attack”, CNN Tech, 4 June 2017. The 9.9x surge occurred at Miami Beach
during the 2016 New Year celebrations. See “Uber Users Are Complaining About Pricey
New Year’s Eve Rides”, TIME, 2 January 2016.
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for free rides). More recently, the introduction of post-paid programs (credit
card top up, often with the chance of getting a quota of free rides) has the
potential of encouraging loyalty to a platform because consumers have al-
ready paid ex-ante for rides. For drivers, incentive programs based on the
number of passengers served (trips) during a given time window (peak hours
during weekdays and/or weekends) make it difficult for drivers to use more
than one platform (which will incure the risk of not achieving the targets in
these incentive programs).

Finally, ride sharing is a complex market. Even though the mechanisms
used in matching passengers with riders can be simple, the decentralized and
spatial nature of the interactions between riders and passengers can produce
unexpected outcomes. This dimension has not been fully explored yet - a
task this study aims to undertake by modelling ride sharing as a complex
system with heterogeneous agents interacting in a decentralized manner.

3 Related Literature

The research literature on ride-sharing is at a nascent stage even though
the recent re-emergence of ride-sharing has been around for more than five
years. The pace of research on this topic has been constrained both by data
availability and theoretical developments. Both empirical and theoretical
literature are reviewed in this section. This then provides the opportunity
to discuss how the present study contributes to the literature.

3.1 Empirical Literature

In the domain of empirical research, most of the few studies that have
emerged involved participation by researchers from ride-sharing companies -
primarily, Uber (e.g. Hall et al. (2015), Cohen et al. (2016) and Castillo et al.
(2017)). The empirical literature on ride-sharing has primarily focused on a
few key topics such as surge pricing, consumer surplus, capacity utilization,
and traffic congestion.

One of the earliest study on Uber’s surge pricing was Hall et al. (2015). The
study, which involved researchers from Uber, primarily focused on explain-
ing the impact of Uber’s surge pricing on reducing the gap between supply
and demand (see earlier discussions). High-frequency data on demand (ride
requests and users opening Uber’s app) and supply (number of drivers in the
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area experiencing surge in demand) from Uber were used in the study. The
study provided evidence on the impact of surge pricing on allocating rides to
those who value them more during the surge period. However, the authors
were more reluctant to claim that surge pricing had a strong positive impact
on the supply of drivers because the change in supply could itself be induced
by drivers’ expectation/knowledge of increase in demand (thus resulting in
double counting or over estimation of the causal effects).

The earlier findings on surge pricing by Hall et al. (2015) were somewhat sup-
ported by the study by Chen et al. (2015) which did not use data from Uber
directly. Chen et al. (2015) found that surge pricing did have a strong and
negative effect on passenger demand but a weaker and positive effect on car
supply. Furthermore, even though there is some regularity in the occurrence
of price surge (e.g. during rush hours on weekdays), the surge multipliers
could not be forecasted. The study also found that the spatial dynamics of
ride-sharing is complex - whilst the spatial concentration of drivers can be
predicted (around CBDs and tourist attractions), the relationship between
car density and estimated waiting time is not straight forward.

A more recent study that used data from Uber is Castillo et al. (2017). The
study argued that surge pricing can help prevent a “wild goose chase” -
an equilibrium outcome that has a low number of idle drivers resulting in
deficient matching and long pickup lines. In the absence of surge pricing,
a high uniform would be needed to reduce demand - one that is even more
harmful to consumers than surge pricing.

There are a number of other empirical studies on ride-sharing that do not
focus directly on surge pricing. One such study is that of Cramer and Krueger
(2016) which compared capacity utilization by taxi drivers and Uber drivers.
The authors found that, on average, UberX drivers has 30 percent higher
capacity utilization (measured in time) compared to taxi drivers. This gap
is even larger - at 50 percent - if capacity utilization is measured in terms of
mileage. Several explanations were offered to explain these findings: (i)more
efficient driver-passenger matching technology, (ii) higher number of ride-
sharing drivers than taxi drivers, (iii) inefficient taxi licensing regulations
that restricts taxi operations geographically, and (iv) flexible labour supply
model in ride-sharing services. The authors also highlight two additional
implications of the differences in capacity utilization between ride-sharing
drivers and taxi drivers: (i) ride-sharing drivers can charge lower fares than
taxis and earn the same amount of revenue, and (ii) ride-sharing can lower
traffic congestion and fuel consumption.
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More recent studies have begun the examine the impact of ride-sharing on
social welfare. One aspect of social welfare is consumer surplus. Using data
from Uber, the study by Cohen et al. (2016) estimated consumer surplus to
be around USD2.88 billion in 2015 for four major cities in the US. Another
aspect of social welfare is traffic congestion. Using a natural experiment
approach, Li et al. (2017) found evidence of ride-sharing reducing traffic
congestion. This was done by comparing the level of traffic congestion in 101
urban areas in the US namely before and after the entry of Uber.

3.2 Theoretical Literature

On the theoretical front, at least two strands of literature are relevant to the
analysis of ride-sharing markets. The first strand is the literature on two-
sided markets or platforms.7 The early literature on two-sided markets dates
back to the seminal contributions of Caillaud and Jullien (2003), Rochet and
Tirole (2003) and Armstrong (2006). The early works have primarily focused
on the actions of the platform (market intermediary). These actions pertain
to price level and price structure. The latter refers to the setting of prices
at both ends of a two-sided market in such a way as to maximize output
(efficiency) by charging more on one side compared to the other side. This
is determined by a number of factors, namely: (1) the relative size of cross-
group elasticities, (2) fixed fees or royalties, and (3) presence of single or
multi-homing. The more recent literature has focused on a number of topics
such as platform ownership structure, asymmetric networks on both sides of
the market, and cross-subsidization on both sides. Even though the empir-
ical literature on ride-sharing has not drawn explicitly from the theoretical
literature, the latter remain useful. Collectively, this body of literature can
be used to provide a more formal approach to characterizing ride-sharing and
for analyzing factors that affect the pricing strategies adopted by platforms in
ride-sharing. These include ride-sharing incentives on both the demand side
(discounted fairs and loyalty membership) and supply side (trip-based bonus
incentives) that are clearly related to network effects. Similarly, switching
cost can be interpreted as an important strategic variable to enhance network
effects.

Beyond the above insights from the two-sided market literature, more recent
theories could provide further insights into ride-sharing. These are theories of
dynamic platform competition and theories of spatial platform competition.

7For a general treatment, see Rysman (2009), Evans (2011), Evans and Schmalensee
(2016) and Einav et al. (2016)
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In an early work by Chen and Tse (2008), dynamic platform competition is
modelled as a differential game involving the growth of platform users. They
find that a two-sided market is likely to be dominated by a single platform
(winner take all) when multi-homing tendency is high and in the absence of
market segmentation. In Dou and Wu (2016), dynamic platform competition
is studied using a multi-period symmetric duopoly platform model. In their
study, platforms subsidize buyers and sellers in the initial period but the
subsidies are reduced on one-side in subsequent stages. Platforms can also
gain competitive advantage at the early stage by importing external users
(piggybacking) and subsidizing them. The importance of platforms taking an
early market lead in dynamic competition (network effects) is also examined
by Halaburda et al. (2016). An interesting result from the paper is the
presence of multiple equilibria in infinite time horizon models in which either
low or high quality platforms can dominate. The authors also extended their
model to incorporate stochastic change in qualities. In such models, higher
quality platforms will only prevail when platforms are more forward looking
(less myopic). Another study that looks at dynamic and stochastic price
competition with network effects is Cabral (2011). Even though the study
does not focus on platform competition per se, findings from the study is
useful to understand network effects in dynamic competition. One interesting
result from the study is that when network effects are sufficiently strong, the
stationary distribution of market shares is typically bimodal in which the
system is mostly in a state where the large network has a high market share.

Finally, another group of theoretical work that is relevant to this study is
that which attempts to model platform competition spatially. One of the
first paper to do this is Raalte and Webers (1998) which studied competition
between two platforms (intermediaries) using commission fee in a one-stage
(static) spatial setting. In their model, the two platforms are located di-
ametrically opposed to each other along a Salop (1979) circle. Two types
of agents with different densities are distributed uniformly along the circle.
The equilibrium outcome is one in which: (i) each platform has an equal
share of the two types of agents, and (ii) one type of agent is charge zero
fee. The Salop (1979) circle is also used in the study by Kodera (2010) which
studied how the equilibrium price is affected by cross-group network effects.
If such effects are larger on the sellers’ side, competition amongst platforms
for buyers will be more intense (hence lower prices on the buyers’ side). In
the presence of free market entry, network effects will result in a sub-optimal
number of platforms.
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3.3 Lessons and Guidance from the Literature

There are clearly some differences between the empirical and theoretical liter-
ature. In the empirical literature on ride-sharing, the main focus has clearly
been on the nature and impact of surge pricing. The empirical studies have
also mostly examined the impact from the operation of one platform, namely
Uber. This is due to market structure and data constraints.

In the case of the theoretical literature, the seminal works on two-side plat-
forms pre-dates the entry of Uber (2009). These and subsequent works focus
on two-sided platforms in general and especially on pricing strategies (level
and structure) in the presence of network effects. Network effects are clearly
important in ride-sharing but this does not appear to be a key issue in the
empirical literature. This is because it has focused primarily on one platform
(Uber) rather than two platform competition (Grab vs. Uber). This raises
the interesting question of how network effects are related to surge pricing.
A platform may lower prices/fares (subsidize) to enhance market share and
in the process increase the more demand for riders.

The literature survey also indicates that most of the models in the literature
are static and non-spatial in nature (Table 1). There are a few dynamic
models of platform competition but these are primarily non-spatial in nature.
Thus, more research is needed on dynamic and spatial models of two-sided
platform competition.

Table 1: Types of Two-Platform Models
(Example of Studies)

Static Dynamic
Non-Spatial Rochet and Tirole (2003) Chen and Tse (2008)
Spatial Raalte and Webers (1998) ?

What is to be gained by studying two platform models that are both dynamic
and spatial? There are some clues from the literature on dynamic game-
theoretic spatial models (Lindgren, 1997). Complete dominance of a strategy
(winner take all scenario) may not take place in dynamic spatial models. This
could be particularly true for models with stochastic elements (as hinted in
the study by Cabral (2011)). These could explain the empirical findings
on the complex nature of the relationship between driver/car density and
waiting time.
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Finally, one important aspect that is not discussed nuch in the literature is
the distribution of prices.8 This is important in a spatial competition setting
where prices vary over time and space due to changes in demand-supply
conditions. By incorporating these elements, this study hopes to contribute
towards extending the research literature on the dynamics of spatial two-
platform competition in general, and on ride-sharing more specifically.

4 Dynamics of Competition in Ride-Sharing

The general goal of this study is to examine the dynamics of competition
in ride-sharing in a spatial setting. This section explicates which aspects of
ride-sharing competition will be examined and why.

4.1 Price Distribution and Dynamics

Price is a key variable in the study of markets. In ride-sharing, demand
and supply conditions change continuously over time and across space (loca-
tions). Even though prices are set in a centralized manner by each platform
using a specific algorithm or formula, there is no single price at each moment
in period. Rather, what is observed is a distribution of prices across time
and different locations. Is the distribution of prices Gaussian (normal - a
in Figure 2), heavy-tailed (b), lepto-kurtic (c) or bi-modal (c)? An under-
standing of the distribution of these prices is important for any assessment
of the distribution of welfare effects. The impact of surge pricing will depend
on what the distribution of prices look like. An examination of the dynamics
of price change in a spatial setting might also reveal interesting features. Do
prices at different locations vary randomly or do they tend to converge?

8There is now an emerging interests in micro pricing data e.g. Cavallo and Rigobon
(2011), Cavallo (2015), and Rigobon (2015)
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Figure 2: Statistical Distributions
Source: http://www.dummies.com/education/science/biology/

the-symmetry-and-shape-of-data-distributions-often-seen-in-biostatistics/

4.2 Strategic Pricing

Pricing strategies is a key feature in the theoretical literature. This can take
the form of setting lower prices (subsidize) to take advantage of network
effects. This strategy is often observed in ride-sharing when there is intense
competition between two or more platforms.9 For example, in a market with
two platforms i = (A,B), what would be the effects of adopting the following
surge pricing strategies with different discount factor δ at location j?:

pi,j = f(Demandj − Supplyi,j) (1)

At what discount level would a platform completely dominates the market
(winner take all scenario)?

9”Fare cuts by Uber, Grab will hurt sector: Taxi body”, Straits Times, 24 April 2016;
“Price War Sees Uber Lose $2.7m A Day In China”, Sky News, 18 February 2016.
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4.3 Fixed Pricing vs. Surge Pricing

One market competition scenario that is not often discussed in the research
literature is one in which a platform uses surge pricing while its rival uses
a fixed price (or metered fare). Surge pricing is a form of dynamic pricing
that takes into account current demand and supply conditions at a given
location. For fixed pricing, prices are fixed and do not vary over time as
demand and supply conditions change. The co-existence of fixed and surge
pricing is not only a theoretical possibility. In many markets, both pricing
approaches co-exists with ride-sharing adopting surge pricing whilst taxis
adopting fixed (metered) pricing. How will the two platforms with different
pricing approaches fare in such situations? This, of course, depend on the
level of price at which the fixed prices are levied. This raises the issue of the
possibility and usefulness of conceptualizing an “sustainable price” that can
be used for fixed pricing that will ensure taxis’ survivability.

To study this problem, two types of simulations are carried out:

• Pure Fixed Pricing - in which both platforms adopt fixed pricing

• Fixed Pricing and Surge Pricing - in which one platform adopts fixed
pricing while the other adopts surge pricing.

4.4 Information Sharing

Another topic that will be examined is the impact of information sharing
between rival platforms. This is related to (but is not identical) to the
issue of monopoly and mergers that recur in the research literature. In a
competitive setting, rival platforms set prices based on the demand at a
given location and its own supply condition (number of its drivers). This is
expressed earlier, for platform i at location j as:

pi,j = f(Demandj − Supplyi,j) (2)

When information is shared, prices at location j are set based on the collective
demand and supply at the location:

pi,j = f(Demandj − Supplyj) (3)

The result would be as if both platform offering identical prices with con-
sumer choosing randomly between the two. The two platforms may still have
different market shares due to the different locational distributions of their
drivers.
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5 Ride-Sharing Model

5.1 Description of Model

This section provides a description of the ride-sharing model that will be
simulated in this study. The ride-sharing market is modelled as a two-sided
market that comprises three types of agents, namely, (i) drivers that use the
platforms to provide taxing services; and (ii) passengers that use the services
provided by the drivers through the platforms; and (iii) platforms that match
drivers with passengers.

Assume that there are two platforms (i = 1, 2) in the market providing
platforms for ride-sharing. These platforms serve to match drivers with pas-
sengers. The two platforms can set the price p that drivers can charge their
passengers.

It is assumed that the total number of drivers in the market is fixed at N . A
driver can only sign-up with one platforms (single homing).10 The number
of cars using platform i is given by ni. Thus, at any one time, the following
constraint is met:

n1 + n2 = N (4)

The Salop (1979) circle is used to model space in the model with a total
of y locations. In the first period, the N drivers from both platforms are
randomly distributed across the y locations. It is further assumed that there
are C passengers in the market which are also randomly distributed across
the y locations along the circle.

For simplicity, it is assumed that a driver can only travel if they can pick up a
passenger. Otherwise the driver will remain stationary in that period. Thus,
the number of passengers can be - (i) less than, (ii) equal to, or (ii) more than
- the number of drivers at each location. The number of passengers that can
actually travel at a given location is constrained by the number of available
cars at that location. Similarly, the number of drivers that can travel from
a given location will depend on the number of passengers at that location.

10In reality, drivers can sometimes sign-up with two platforms even though this is often
discouraged contractually and via incentive mechanisms (e.g. drivers can only accumulate
enough rides if the trips they make are allocated to one platform).
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During each period (an iteration in the simulations), a passenger j plans to
travel distance xj in a one-way (single direction) along the circle. The mini-
mum distance is zero (not travelling) and the maximum distance of travel is
assumed to be half of the locational circumference of the circle (y). Thus,

Max xj =
y

2
(5)

The planned distance of travel by each passenger xj (trip distance) is gen-
erated via a uniform random draw from a set comprising zero and positive
integer numbers:

xj = Rand (X) (6)

where X = [0, 1, 2, ..., y/2] with xj = 0 indicating that passenger j will not
travel.

In order to travel, a passenger has to use the service of a driver from one
of the two platforms. Passengers are assumed to multi-home - they can
choose either one of the platform in each period. Let cj be the number of
passenger choosing to use the service of cars under platform i. Thus,

c1 + c2 = C (7)

In this model, it is assumed that a passenger will choose to use the platform
offering the lowest price i.e. Min(p1, p2).

11

It is assumed that each platform is only aware of its own distribution of cars
at each location and not those under the other platform. Platform i will
set its price based on the market demand and its own supply conditions at
each location. To approximate surge pricing, the pricing formula used by
platform i at a given location s depends on excess demand for platform i at
that location:

pi,s = 1 +
cs − ni,s

C/2
(8)

where cs is the number of passengers at location s, ni,s is the number of
drivers under platform i at location s and C total number of passengers.

The intuition behind the above equation is that when there are more drivers
than passengers at a given location, higher prices are offered. Each platform
will allocate one driver to each passenger. If both platform offer the same

11In this model, the reservation price of consumers are not modelled explicitly. We can
assume that underlying the passenger’s decision-making is a reservation price (vj). For
consumers that choose to travel (i.e. xj > 0), Min [p1, p2] ≤ vj .
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price - a consumer will randomly choose one of them. For simplicity, it is
assumed that the surge pricing at a given location that comes about from high
excess demand do not increase the supply of drivers at that location. This
could be a reasonable simplification as existing empirical studies tend to find
a relatively weak supply response to surge pricing (see earlier discussions).

5.2 Implementation of Simulations

The following is the sequence of the algorithm for the simulations:

• Step 1: Distributions are generated for the locations of of drivers
(n1, n2) and passengers (cj).

• Step 2: Distributions are generated for the travel destination for each
passenger (xj).

• Step 3: The prices for each platform at each location (pi,s) are computed
using the price formula (equation 8).

• Step 4: The set of passengers that can travel is generated based on the
availability of passengers and drivers at each location.

• Step 5: Each passenger that can travel is assigned a driver from one of
the platform based on which platform’s price is lower. In cases where
both platforms’ prices are identical (due to equal number of drivers),
the passenger’s choice is randomized.

• Step 6: The locations of passengers and drivers are updated (comple-
tion of trips).

• Step 7: The sequences of Step 2 to Step 6 is iterated in a loop to
generate a sequence of movements by passengers and drivers.

The base-line simulations were implemented using Mathematica using the
following parameters:

• Number of total drivers for the two platforms: 40 (or 20 each)

• Number of passengers: 60

• Number of location: 10

• Number of iterations (period): 100
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6 Simulation Results

Four classes of simulations were carried out corresponding to the four topics
discussed in the earlier section. The results from the simulations are reported
and discussed below.

6.1 Price Distribution and Dynamics

The price algorithm used in this study’s simulations is based on an excess
demand function (see equation 8). When supply matches demand, the price
is equal to one (1). The model is simulated with two identical platforms -
they have the same number of drivers and price-setting function. However,
the distribution of cars under each platform across the locations are different.

In the simulations, prices do fluctuate at the various locations due to mis-
matches between demand and supply. Interestingly, whilst there may be
cases where prices do fluctuate around a single band (Figure 3), there are
cases when prices can bifurcate into two (Figure 4) or three (Figure 5)
distinct bands. This takes place while the market shares of the two platform
fluctuates in every period (panel c in Figures 3-5) and despite both having a
cumulatively equal market share (due to the identical/symmetric platforms).
Thus, in a fully competitive two-platform market, prices can bifurcate and
persist - the latter exhibiting path-dependence.

Another take-away from these simulations is the need to re-evaluate the no-
tion of a single equilibrium price or a single equilibrium price distribution.
Even though prices are set in a centralized manner by each platform, the
effective price - defined as prices that are accepted by passengers - are de-
centralized at each location.
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Figure 3: Simulation Results: Baseline 1
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Figure 4: Simulation Results: Baseline 2
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Figure 5: Simulation Results: Baseline 3
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6.2 Strategic Pricing

The literature on platform competition often discusses the use of price reduc-
tion (subsidy) as a strategy to increase market share which potentially leads
to a complete dominance situation (winner take all). As the passengers in the
model base their decisions on price alone, the winner take all is an obvious
outcome. What is less certain, however, is the extent of price reduction by
one platform that is needed to achieve compete dominance. Furthermore,
the spatial distribution of drivers also implies that even when the prices of
a platform is lower than another, the former may not have available cars or
have very few cars at a given location compared to the demand level.

Simulations are undertaken for a few scenarios in which one of the plat-
form reduces its price by applying a discount factor on the pricing formula.
Different sizes of discount (5%, 10%, 20%) are applied. The results are as
follows.

(a) 5% Price Discount

From the simulations, a price reduction of 5% by one of the platform is clearly
insufficient to completely dominate the market. Thus, space does mitigate
the effects of price competition to some extent. However, the platform with
lower prices does have a distinct but small advantage over its rival. This can
be seen in panel (d) in Figure 6 - the blue line (platform with lower price)
is above the orange line.

(b) 10% Price Discount

When a platform offers an even higher discount - 10% in this case - the market
share of the firm increases in a more stark manner. The market shares of
both platforms continue to fluctuate in each period but the platform with the
lower price has a higher market share in most periods (panel (c) in Figure

7). The longer-run advantage of the firm with lower prices is even more clear
(panel (d) in Figure 7).

(c) 20% Price Discount

With an extreme level of discount, the winner take all scenario materializes
(Figure 8). The platform with lower prices (by 20%) completely dominates
the market. Prices at the different location become fixed at different levels.
Note that in this scenario, only drivers that are under the platform with
lower price is picking up passengers and moving. This fixed price level out-

20



come could be due to a significant number of passengers (almost half) are no
longer served by the market (see panels (c) and (d) in Figure 8). However,
the winner take all scenario is not a given. In some simulations, the platform
with lower prices can survive, though with a significantly lower market share
(Figure 9). In other words, “luck matters” in a stochastic world.
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Figure 6: Simulation Results: 5% Price Discount
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Figure 7: Simulation Results: 10% Price Discount

22



20 40 60 80 100

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

(a) Price by Location

0.9 1.0 1.1 1.2

50

100

150

200

(b) Distribution of Prices

20 40 60 80 100

5

10

15

20

(c) Number of Trips by Platform

20 40 60 80 100

500

1000

1500

(d) Cumulative Trips by Platform

Figure 8: Simulation Results: 20% Price Discount - Winner Take All
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Figure 9: Simulation Results: 20% Price Discount - Luck Matters
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6.3 Fixed Pricing vs. Surge Pricing

Taxi platforms and ride-sharing platforms often co-exist and compete in ride-
hailing markets. In these markets, taxi and ride-sharing platforms often
adopt different pricing approaches. As discussed earlier, two scenarios are
simulated: (i) pure fixed pricing - when all firms adopt fixed pricing, (ii)
mixed market where one platform adopts fixed pricing while the other adopts
surge pricing.

(i) Pure Fixed Pricing

When prices are fixed at zero excess demand, the outcome is predictable.
One single price prevail (p = 1) with fluctuating market share and both
firms having equal cumulative market share over time (Figure 10).
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Figure 10: Simulation Results: Pure Fixed Pricing
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(i) Mixed Pricing

The more interesting case is the one with mixed market pricing. It is obvious
that it matters at what level is the price fixed. In the first simulation, the
fixed price is set at p = 1. The simulation results clearly indicate that the
fixed price at p = 1 is lower than the prices set via surge pricing. This is
evidence by the higher market share of the platform using fixed pricing (blue
line in Figure 11).
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Figure 11: Simulation Results: Mixed Pricing I

(Fixed Price, p = 1.00)
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When the fixed price is set at a higher level (p = 1.25), there seems to be
two classes of market outcomes.12 In the first case, the market share of the
platform using surge pricing (orange line) is higher than the platform using
fixed pricing (blue line) (Figure 12).
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Figure 12: Simulation Results: Mixed Pricing II

(Fixed Price, p = 1.25)

12We are reluctant to use the term equilibria.
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However, in the second case, some simulations show that the advantages of
using surge pricing do not always persist over time. The platform using surge
pricing can lose market share over time, eventually losing its lead to the plat-
form using fixed pricing (orange line in panel (c) and (d) in Figure 13).
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Figure 13: Simulation Results: Mixed Pricing III

(Fixed Price, p = 1.25)
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What if the fixed price is set significantly higher (e.g. at p = 1.5)? We would
expect that the platform setting a high fixed price will become completely
uncompetitive. This is indeed the case in some simulations (Figure 14).
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Figure 14: Simulation Results: Mixed Pricing IV

(Fixed Price, p = 1.30)
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However, though not as frequent, there are simulations that indicate that the
competitive gap between the two platforms may decline over time (Figure
15). This can be attributed to what we term earlier as stochastic luck. How-
ever, the market share of the platform with high fixed price is relatively low.
Over time, even the market share of the platform using surge pricing declines
to a low level. These two trends in market share seem to suggest that the
market could converge over time to a situation where the market only serves
a small number of passengers.
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Figure 15: Simulation Results: Mixed Pricing V

(Fixed Price, p = 1.30)
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To sum up, the mixed pricing simulations indicate that in spatial markets
with stochastic elements, there are a number of potential outcomes - each
occurring with different probabilities. Whilst we eschew the term “multiple
equilibria”, but there is some parallel here between this concept and what is
observed from the simulations. Perhaps, a more appropriate characterization
is that of a complex system that can move along a number of several possible
trajectories depending on various factors such as initial conditions, stochastic
shocks and parameters of the system (in this case, the price level fixed).

6.4 Information Sharing

In the literature on two-sided markets, comparisons are sometime made be-
tween two-sided platform competition and a monopoly. One possible ap-
proach to mimicking the monopoly platform model is for rival platforms to
agree on sharing information on the total cars available (under both plat-
forms) at each location and use that as a basis for setting prices. Results
from the simulations on information sharing suggests that whilst the market
share of platform fluctuate over time, prices become stationary at the dif-
ferent locations. However unlike other situations where the outcome is also
stationary prices, the number of total trips are much higher on average.
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Figure 16: Simulation Results: Information Sharing

(Under Surge Pricing)

7 Conclusion

Ride-sharing has disrupted the public transportation system in many coun-
tries. The research literature on ride-sharing per se is still at a nascent stage.
The recent empirical literature on ride-sharing has mostly focused on surge
pricing in a single platform (Uber) setting. In the theoretical literature on
two-sided platforms, there is an absence of studies that are both dynamic
and spatial. This study attempts to fill the existing empirical and theoreti-
cal research gap by implementing simulations of competition in ride-sharing.
By doing so, it is hoped this study will provide some useful insights for
policy-makers and regulators dealing with new and disruptive services such
as ride-sharing.

To understand competition in ride-sharing, four classes of simulations were
carried out focusing on:(i) price distribution and dynamics, (ii) strategic pric-
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ing, (iii) fixed pricing vs. surge pricing, and (iv) information-sharing. The
simulations on price distributions and dynamics indicate that even when a
market is competitive in the symmetric sense (identical platforms), prices
can bifurcate into two or more distinct bands of prices for different locations.
The decentralized determination of prices (by location) also imply that it
might be more useful to study the distribution of prices rather that focusing
on an “equilibrium price”. In the simulations on strategic pricing, the setting
of lower prices can lead to a complete dominance by the platform with lower
prices. However, the spatial and stochastic nature of the model can mitigate
this “winner take all” effect. This can be due to “stochastic luck” - random
shocks that produces spatial distributions that favour a disadvantaged plat-
form. The competitive dynamics of markets with ride-sharing (surge pricing)
co-existing with taxi services (fixed price) can be complex. The market out-
comes depend on the level of the fixed prices. In some cases, the advantages
of surge pricing can be eroded over time. Platforms with extremely high
fixed prices may continue to get passengers (due to stochastic luck) but their
volume of trips are very small. Finally, information sharing reduces price
fluctuations as information on market demand is pooled.

Overall, spatial and stochastic elements in two-sided markets such as ride-
sharing make such markets complex. These markets can have a number of
possible dynamic trajectories each with different outcome probabilities. This
implies that the impact of policy interventions cannot be known in advance
in some cases.
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